A consortium of businesses is developing an electric powertrain that will meet the demands of future vehicles.
Electric powertrains (motor, inverter, gearbox, battery) will need to be more robust and durable in order to withstand the strenuous duty cycles that connected and autonomous vehicles (CAVs) will cover in their lifetimes.
Current vehicle powertrains are typically designed for a lifetime of 150,000 miles, however the CAVs of the future could achieve that mileage in under a year. Therefore, there is a need to design ultra-durable powertrains to cater for this heavy-duty drive cycle.
Cenex, EMPEL Systems and Romax Technology, funded by Innovate UK’s Smart Grants competition, will collaborate on project RUBICON – ultRa-dUraBle electrIC pOwertraiNs – to design a novel powertrain by considering its entire economic and environmental “cradle-to-grave” life cycle.
EMPEL’s expertise in electric motor design and power electronics combined with Romax’s 30 years of experience in performance simulation, testing and design will allow the consortium to improve on the current state-of-the-art powertrains, that have suboptimal life cycles, by taking this innovative and integrative system approach to the design. Cenex will investigate the different usage scenarios between CAVs and existing vehicles.
Henry Tanner, Principal Engineer (R&D) at Romax, said while we know the future of mobility will be Electric, Shared, Connected and Autonomous, “What is not understood is exactly how these trends will impact vehicle powertrains from an economic, environmental or design perspective. This project is an exciting opportunity to explore new ways transport will be consumed in the future and understand how these new usage archetypes can be used to optimise powertrains for the next generation of passenger cars.”